TODRA, a lncRNA at the RAD51 Locus, Is Oppositely Regulated to RAD51, and Enhances RAD51-Dependent DSB (Double Strand Break) Repair
نویسندگان
چکیده
Expression of RAD51, a crucial player in homologous recombination (HR) and DNA double-strand break (DSB) repair, is dysregulated in human tumors, and can contribute to genomic instability and tumor progression. To further understand RAD51 regulation we functionally characterized a long non-coding (lnc) RNA, dubbed TODRA (Transcribed in the Opposite Direction of RAD51), transcribed 69bp upstream to RAD51, in the opposite direction. We demonstrate that TODRA is an expressed transcript and that the RAD51 promoter region is bidirectional, supporting TODRA expression (7-fold higher than RAD51 in this assay, p = 0.003). TODRA overexpression in HeLa cells induced expression of TPIP, a member of the TPTE family which includes PTEN. Similar to PTEN, we found that TPIP co-activates E2F1 induction of RAD51. Analysis of E2F1's effect on the bidirectional promoter showed that E2F1 binding to the same site that promotes RAD51 expression, results in downregulation of TODRA. Moreover, TODRA overexpression induces HR in a RAD51-dependent DSB repair assay, and increases formation of DNA damage-induced RAD51-positive foci. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51-dependent DSB repair in malignancy. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51-dependent DSB repair in malignancy.
منابع مشابه
The role of Rad51 protein in radioresistance of spheroid model of DU145 prostate carcinoma cell line
Background: Rad51 is a protein with critical role in double strand break repair. Down-regulation of this protein has a significant effect in radiosensitivity of some cell lines like prostate carcinoma. Compared to monolayer cell culture model, the spheroids are more resistant to radiation. The aim of the current study was to determine the Rad51 protein level in DU145 spheroids, and monol...
متن کاملRole of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus...
متن کاملHomotypic and heterotypic protein associations control Rad51 function in double-strand break repair.
Rad51 is essential for efficient repair of DNA double-strand breaks (DSBs) and recombination in Saccharomyces cerevisiae. Here, we examine Rad51 protein-protein interactions and their biological significance. GAL4 two-hybrid fusion analysis demonstrated that the amino-terminal region of Rad51 mediates both a strong Rad51:Rad51 self-association and a Rad51:Rad52 interaction. Several Rad51 varian...
متن کاملIn vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.
Assembly and disassembly of Rad51 and Rad52 complexes were monitored by immunofluorescence during homologous recombination initiated by an HO endonuclease-induced double-strand break (DSB) at the MAT locus. DSB-induced Rad51 and Rad52 foci colocalize with a TetR-GFP focus at tetO sequences adjacent to MAT. In strains in which HO cleaves three sites on chromosome III, we observe three distinct f...
متن کاملLncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA
DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. The current models of the mechanism of DSB repair are based on studies of DNA repair proteins. Long non-coding RNAs (lncRNAs) have recently emerged as new regulatory molecules, with diverse functions in biological processes. In the present study, we found that expression of the ionizing radiation-inducible...
متن کامل